博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Elementary Methods in Number Theory Exercise 1.4.36
阅读量:6527 次
发布时间:2019-06-24

本文共 917 字,大约阅读时间需要 3 分钟。

Let $H=\{1,5,9,\cdots\}$ be the arithmetic progression of all positive integers of the form $4k+1$.Elements of $H$ are called Hilbert numbers.Show that $H$ is closed under multiplication,that is ,$x,y\in H$ implies $xy\in H$.An element $x$ of $H$ will be called Hilbert prime if $x\neq 1$ and $x$ can not be written as the product of two strictly smaller elements of $H$.Compute all the Hilbert primes up to 100.Prove that every element of $H$ can be factored into a product of Hilbert primes,but that unique factorization does not hold in $H$.

 

Proof:

(1)$H$ is closed under multiplication:

\begin{equation}
(4k_1+1)(4k_2+1)=16k_1k_2+4(k_1+k_2)+1=4[4k_1k_2+k_1+k_2]+1
\end{equation}Done.

 

(2)5,9,13,17,21,29,33,37,41,49,53,57,61,69,73,77,89,93,97,101,109,113,121,129,……

(3)The existence of the factorization is simple.The non-uniqueness,please see .

转载于:https://www.cnblogs.com/yeluqing/archive/2012/12/01/3827607.html

你可能感兴趣的文章
js生成制定范围的随机整数
查看>>
Android网络编程1
查看>>
Redis+Sentinel安装与配置
查看>>
虚拟机家园VirtualBox虚拟机图文安装教程
查看>>
我的友情链接
查看>>
oracle跟踪常用内部事件号
查看>>
【12c-安装篇】课程目标与课程内容
查看>>
wordpress 文章阅读统计插件之WP-PostViews
查看>>
决定开发者胜败的三要素
查看>>
lamp环境搭建与phpwind,wordprss实现
查看>>
DRBD+Corosync+Pacemaker+MySQL(下)
查看>>
iOS状态栏、导航栏的设置
查看>>
Linux常用命令总结之(四)pwd
查看>>
DBA整体职责方向
查看>>
robotframework环境搭建
查看>>
Docker常用命令和操作
查看>>
我的友情链接
查看>>
【分享】Android二次打包植入广告
查看>>
SQL Server 存储过程
查看>>
6.Python入门到精通
查看>>